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Abstract
In this paper we study a novel approach to the problem of fusion of sensory information in tracking multiple targets in CCTV surveillance video. The approach, called “Rank and Fuse” (RAF) is based on multiple feature ranking and merging as opposed to a more typical combination of all scores (similarity or probability) in a single ranking. This has the advantages of low computational complexity, easy scalability to multiple features, and low-latency. Experimental results are presented to illustrate two aspects of  the RAF approach for a “difficult” example from CCTV surveillance: the advantage of rank versus score combination, and the use of  the rank versus score curve to decide which features to fuse.

1 Introduction

The standard approaches developed for point target tracking, e.g., MHT [1] and JPDAF[2], have been applied to video target tracking with some success, e.g., [3, 4]. However, the information from a video sequence, even from a single camera, is much richer than from the point tracking applications with which multi-target methods originated. For this reason a crucial problem becomes the integration of multiple sensory cues [5, 6]. 

In this paper, we investigate an approach to the problem of multi-target tracking in video sequences that is based on using data fusion in a flexible and efficient manner. The approach is called “Rank and Fuse” [7] or RAF for short, and is based on a combinatorial approach to enumerating and merging sensory information from multiple sources. The approach is inspired by work in information retrieval [13] and we argue it can handle difficult sensory fusion issues on which a more traditional Bayesian approach would fail. 
2 Fusion for Target Tracking

Approaches to tracking in the literature include nearest neighbor  [8], Joint Probabilistic Data Association Filters or JPDAFs [2, 4] and Multiple Hypothesis Tracking or MHT[1, 9]. MHT is a provably optimal approach in which all combinations of matches between previous tracks and current measurements are calculated. This allows successful tracking of a large number of simultaneous targets even if the correct association is not immediately made, as may happen when targets occlude each other or otherwise become temporarily ambiguous (e.g., as in a crowded airport terminal scene). 

The collection of sensory information from multiple sources can improve target tracking. In tracking surveillance targets in a CCTV video sequence, the video, even if it comes from a single camera, can yield a number of data sources from each image which can be treated as separate cues or features. These include foreground region properties such as centroid position, color and shape descriptions, etc [6]. 
MHT typically tracks based on a single feature, usually position. We ask: how can we extrapolate the MHT concept to handle multiple features in a manner appropriate for video tracking? Bayesian combination for multiple cues is proposed for this in [10] (and for JPDAF in [4]). Evidence combination and data fusion have also been considered in information retrieval [11, 12] ). More recently Hsu et al. [13] initiated the study of ranking and data fusion in a new direction by considering the problem of when the rank combination performs better than the score combination. A Bayesian combination is a form of score combination, and while this does work well in many cases, there are many other, common cases in which it doesn’t. In these cases, a non-linear combination is required for better performance  [11, 12]. 
3 The RAF  Framework
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The core of the RAF framework consists of two stages (Rank stage and Fusion stage). In the Rank stage, we enumerate all possible matches of measurements to tracks per feature in a fashion similar to MHT. For each feature we calculate the score of each trajectory using a similarity measure. The RAF method can apply to different levels in a multilevel, multi-target tracking system. For example, at the object level, the goal is to score and rank the trajectories according to different features (such as positions or colors) and then combine those ranks into a simple coherent result. While at the multi-sensor level, ranks from similarity measures for each of the many sensors are integrated into a rank which has better information about the target. 
3.1 Rank and Fusion Architecture and Approach

The method that we propose consists of a two-stage framework (Figure 1). The first stage (Rank stage) is a process of ranking the collection of possible trajectories according to each of the selected features. In this regard, each of the trajectories in the collection for a target is assigned a score (which can be a measurement of similarity or probability) depending on a specific sensory feature. Sorting the collection on the score leads to a ranking of the trajectories in the collection. The second stage (Fusion stage) is a process of combining the rankings obtained from the first stage. Here the rankings are combined using different methods.
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Suppose that m rankings have resulted from the m features in the rank stage. The fusion stage aims to find an optimal way to combine (or merge) the m rankings so that the resultant combination (and ranking) would tell us which trajectories are best supported by all measurements so far. These are the trajectories that will be ranked higher in the combination. 

In  Hsu et al. [13] a ranking of n different elements is treated as a permutation of these n elements. Therefore, the rank space (the set of all possible rankings on n elements) is the set of all permutations of n elements, which is a group (i.e., the so-called symmetric group Sn). Moreover, by suitably choosing a generating set S of the group, and using its elements to define adjacency between nodes, the group Sn is turned into a graph G(Sn ,S),  called the Cayley graph of the group Sn with generating set S (see e.g.,[13, 14] ). By harnessing the group and graph structure and studying the rank correlation, the fusion stage of our RAF method can be modeled in a dynamic fashion (see e.g., [13, 15] ).
[16] 
There are several ways of combining the m rankings that are generated. Since each ranking consists of rank and score, there are both rank and score combinations. For the rank combination in general, two directions are followed. The first one involves consensus building. This combines the results of a list of multiple systems by using a weighted sum from each of the component systems. The second direction is the voting model  which selectively chooses a rank from some of the m rankings.  As an example, we show three combinations: LC (averge), VS1 (minimum), VS2 (maximum). Let R1, R2 and R3 be three rankings attained from the rank stage (Fig. 1) on n=10 trajectories labeled as ti i=1,..,10,  shown in Figure 2. Figure 3 shows the procedure to obtain R*=LC (average). Each of the combinations V1 and V2 simply considers the rank of the trajectory tj to be the minimum (maximum) among {R-1i(tj ) |  i=1,2,3}. Accordingly, trajectories with the same rank are enclosed by parentheses (Fig. 2). We note that tied ranking can occur for R* combinations also. (In this paper, we will resolve tied combinations by simply using the order of the trajectory labels.) 


The RAF method is computationally efficient. For each of the m rankings obtained, it requires n log n complexity to sort the list of n trajectories. Moreover, the Fusion stage only takes (m-1)n additions and an additional n log n steps to obtain the combined rank.  The combined rank is the result of a sensory fusion, since its input was separate sensory rankings. Any of the standard trajectory management techniques used with MHT can now also be applied to the combined rank. 

To make clear that this is a concrete application and to demonstrate that our preliminary results are promising, we begin with the problem to fuse two sensory cue streams from a single video camera: a position-tracking stream and a color-tracking stream. 

3.2 Video Sequence Notation

We will adopt the following standard notation: 

· A Video Sequence F is a set of n frames denoted F = {F0, F1, F2, …….., Fn-1} where Fi is frame number 0( i ( n-1.  Each frame consists of an image Ii with a time stamp ti, for 0(  ti ( tmax.

· Segmentation is the process of identifying regions in an image that correspond to objects of interest. A segmented image S(Ii) is a set of regions Iij for j ( {0..ni}. 

· Each region can be characterized by a number of feature measurements obtained by applying a measurement function to the region. 
3.3 Feature Selection and Score Assignment 

The trajectory Tk  of a tracked object is a sequence of regions, one element of the sequence per frame in the segmented video sequence, Tk=(Iij)i for object trajectory k.  If there are nti object trajectories at image i and there are ni regions in image i then the association matrix is a nti(ni matrix where entry akj  represents the cost of or score for associating a measured region j of the current image with an existing object trajectory hypothesis k. 
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Each akj is arrived at by calculating the similarity between the measured features of region j in the current frame, and of the predicted values of the last region in trajectory k, given the time difference between the measurement of  j and of the measurement of the last region in k. Let tik  be the last region in trajectory k and let ttk be the time of the frame in which the last region of k occurs. Similarity is typically calculated as:

       akj  = p ( fi ( tik ), ti-ttk )  -  fi ( Iij )

where p(f,t) is the prediction function that maps the last measured features of a region to the expected values of those features after a time t has elapsed and fi is the measurement function for frame i. Our approach is to calculate similarity separately for each feature. A measurement function fiq is defined for each feature q in frame i: 

  fiq : S(Iij) ( Dq and  fiq(Iij) = dq   ,  q({1…m},  dq( Dq 

And we define a prediction function for each feature, 

           pq :Dq ( {0…tmax} ( Dq where pq(dq,t) = 
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is the predicted value for feature q which had value dq in the frame t time units before frame i. An association matrix is produced for each feature:
aqkj  =  pq ( fq ( tik ), ti-ttk )  -  fq ( Iij )

This of course requires that the association matrix construction and trajectory generation be done q times, instead of just once. However, note that these operations can be accomplished in polynomial time per feature [9]. 

3.4 Scoring Trajectories

After the trajectory generation phase for frame i [1], a score is assigned to each trajectory based on the association matrix value aqkj and on the score of trajectory k. Reid [1] introduced a probabilistic scoring scheme that was an extension of Kalman filtering. We do not follow this approach for several reasons. Firstly, Kalman filters are not an appropriate prediction mechanism for watching human targets [17, 18]. Secondly, to keep the computational efficiency of the approach as high as possible, and to allow for a low-latency response, we will reduce the scoring mechanism to its minimal form. 
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The score assigned to a trajectory is simply the sum of the association matrix value and the existing trajectory, normalized to the new length of the trajectory. If the trajectory is a new trajectory, then the score is the maximum similarity value for the feature. Let lqk be the length and sqk be the score of trajectory k based on feature q, then for each generated trajectory 
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3.5 Sensory Fusion and Trajectory Management
We accomplish trajectory filtering and sensory fusion using the same technique: ranking and merging lists of trajectories and eliminating trajectories below a critical rank. The scoring function in the previous section allows us to establish a ranking per feature. We adopt an N scan-back filter approach: that is, ambiguity is allowed to accumulate for a certain number of frames (the “window”) and then reduced. At the end of the window in frame i, each trajectory feature ranking is merged into a consolidated list. This list is then reduced to its n top ranked members.  
There are a number of different methods to merge ranked lists. A constraint that we wish to impose is that the merged permutation be as good or better than each individual permutation. Hsu et al. [13] have established this as long as certain conditions hold on the input rankings.
4 Experiments
Three short video sequences (A, B, and C) were used in which a human target entered a room, removed his coat and placed it on a chair, and then walked to the other side of the room (Figure 4 shows frames from A). Normally the use of both color and position cues should give a much more robust tracker than simply a color or position tracker on its own. However, in this difficult but rather common case, the majority of the color information comes from the coat, and hence will introduce incorrect trajectories at the time that the coat is removed.
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Each video was processed by passing it through a background subtraction module that used a non-parametric statistical approach to building a color model of what constitutes background for each pixel in the image [19, 20] and then doing a connected-components analysis for each pixel whose value did not fall into the background. The resultant foreground regions for each frame i are the inputs Iij for our approach.

4.1 Measurement and Prediction Functions

Two measurement and prediction functions were used: a position feature measure and a color feature measure: The position feature was the position of the centroid of the region. The color feature was the average color of the region. The shape feature was simply the bounding box ratio. Prediction of the position feature was accomplished by calculating the frame to frame velocity of the centroid [21] v and using it as follows:
ppos(x,t) = x+vt

The prediction function for color was the identity function.
4.2 Ranking , Merging and Evaluation

For the purpose of this experiment, the window size w was set to be a function of the number of trajectories. Whenever the number of trajectories exceeded 250% of the critical value N=100, then the number of trajectories was sorted and reduced to N. Each trajectory ranked in the top q (q=20 here) in the resultant ranking (Fig. 6) is checked for correctness (Figure 5). We often obtain more than one correct trajectory in the resultant combination.

4.3 Rank and Score Combination Results
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Five tracking runs were completed for each video sequence: one that used only the position feature, one that used only the color feature, one that used a measurement function that was a sum of the color and position scores, and two rank combinations for position and color – a VS1 combination and a Merge combination. Figure 6 shows the top ranked 20 trajectories for each of the position (rp), color (rc), sum of position and color scores (rp+c), combination by minimum rank (rV1), and combination by merged rank (r+). Successful trajectories are shown in bold font. Trajectories were assigned unique identifiers for each video sequence, based on a run-code encoding. This code is valid for every run in each sequence; it is not valid across sequences, of course.
The position-only run produced the correct trajectory of the [image: image13.png]


target as the top ranked trajectory in all cases. The color run did not have the correct trajectory in A in the top 20 ranking, it was the 32nd. This is because the color feature was misdirected when the target removed his coat and placed it on the chair.  The sum of the scores run (rp+c) had the correct trajectory in rank 4, since the local combination was weighted down by the incorrect color information.  However, a straight merging of the ranked results from the color and position runs (r+) produces the correct trajectory at rank 1. The combination by minimum rank selection also performed well. These combinations perform in a similar fashion on sequence B.

In sequence C, the color information is correct.  Combination by score performs well in this case of course, but the rank combinations perform well also. Hence, rank combinations handle the difficult cases in A and B, but have not lost functionality on the “easy” case.

4.4 Rank/Score Graphs

Hsu et al. [13] remarks that rank combination will outperform score combination under certain conditions. In particular, they note that in the literature it has been observed empirically that when the ranking behavior of the two input ranking processes are sufficiently different, then combination by rank outperforms combination by score. In their own results, they derive a specific criterion for rank outperforming score.
Figure 7 shows the rank versus score graph for three feature cues: position, color, and a new feature, shape. Note that while position and color cues have a somewhat similar overall form, the shape cue appears to have a different form. Based on the empirical observations cited before, we would expect that a rank combination of shape and color would outperform a score combination. Figure 8 shows the results of this experiment, where rs is the shape cue ranking, rs+c is the score combination of shape and color, and rV1, r* are the rank combinations by minimum and by average discussed previously. Shape and Color are not particularly good cues for this tracking application. Their score combination is not particularly effective. However, the rank combination by sum performs noticeably better, as predicted.
5 Discussion

We have applied the RAF method to multi-target tracking in CCTV surveillance and have obtained results which indicate that the RAF approach handles difficult feature fusion cases better than just a score combination method (eg Bayesian) could. In particular, our experiments on this difficult example demonstrated that each of the rank combinations r+ and rV1 performs better than that of rp+c (combination resulting from the sum of feature scores rp and rc). However, our combination rp+c in all cases exhibits correct trajectories in its top 20 ranked list. If the typical technique used with MHT of looking at the best ranked trajectory in rp+c were employed, no correct trajectory would have been found however. We have also shown some empirical validation of the remarks in [13] and elsewhere that the more different the component rank/score graphs are, the better rank combination should perform over score combination.
We discuss the significance and advantages of RAF operation under two key  headings:

(1) Computational Efficiency. Sorting a list of nti items as in our examples has complexity nti*log nti. All the features can thus be sorted in m*nti*log nti worst case. Note that the combination operation does not have to proceed beyond the critical rank.

(2) Scalability. The mechanism scales linearly by the number of features. This encourages us to believe that this mechanism can be used as broadly as possible. That is, not only for multi-cue fusion from a single camera, but also multi-camera fusion, and ultimately extension to other sensory modalities than vision. 

Note that while the RAF appproach handles multiple targets and occlusion issues, it does not handle the merging or splitting of trajectories when dealing with groups. We argue that this should be handled separately, e.g., [21], based on the tracking data supplied by RAF.
The current study indicates several directions for future work:
(1) For one video sequence, two trackers are employed, each using (a) different similarity measures, and (b) different pruning measures, tracking one, two and then many objects.

(2) For two (or more) video sequences of the same events, two (or more) identical or different trackers are used for one, two and then more objects

(3) The rank rp+c is obtained from combining the constituent rankings rp and rc. On the other hand, rV1, rV2, and r+ result from combining ranks in rp and rc. We will explore other score and rank combinations with various rank/score graphs in future work.

6 References
1. Reid, D.B., An Algorithm for Tracking Multiple Targets. IEEE Trans. on Aut. Control, 1979. AC-24(6): p. 843-854.
2. Bar-Shalom, Y., Fortmann, T.,, Tracking and Data Association. 1988: Academic Press.
3. Cox, I.J., Hingorani, S.L. An Efficient Implementation and Evaluation of Reid's Multiple Hypothesis Tracking Algorithm for Visual Tracking. Int. Conf. on Pattern Recognition. 1994.
4. Rasmussen, C., Hager, G.,. Joint Probabalistic Techniques for tracking Multi-Part Objects. Proc. Computer Vision & Pat. Recog.. 1998. Santa Barbara CA.
5. Varshney, P.K., Special Issue on Data Fusion. Proceedings of the IEEE, 1997. 85(1).
6. Loy, G., Fletcher, L., Apostoloff, N., Zelinsky, A. An Adaptive Fusion Architecture for Target Tracking.  Proc. of 5th Int. Conf. on Face and Gesture Recog. 2002. Washington DC.
7. Hsu, D.F., Lyons, D.M., Usandivaras, C., Montero, F. RAF: A Dynamic and Efficient Approach to Fusion for Multi-target Tracking in CCTV Surveillance. IEEE Int. Conf. on Multisensor Fusion. 2003. Tokyo Japan.
8. Rao, B., Data Association Methods for Tracking Systems, in Active Vision, A. Blake, Yuille, A.,, Editor. 1992, MIT Press. p. 91-106.
9. Cox, I.J., Miller, M.L., On Finding Ranked Assignments with Application to Multi-Target Tracking and Motion Correspondence. IEEE Trans. AES, 1995. 32(1): p. 486-489.
10. Liggins II, M.E., Kadar, I., Vannicola, V., Distributed Fusion Architectures and Algorithms for Target Tracking. Proc. of the IEEE, 1997. 85(1): p. 95-107.
11. Vogt, C.C., Cotrell, G.W., Fusion via a linear combination of scores. Info. Ret. 1999. 1(3): p. 151-172.
12. Ng, K.B., Kantor, P.B., Predicting the effectiveness of Niave Data Fusion on the basis of system characteristics. Jour. American Soc. Info. Sc., 2000. 51(13): p. 1177-1189.
13. Hsu, D.F., Shapiro, J., Taksa, I., Methods of Data Fusion in Information Retreival: Rank vs. Score Combination. 2002, DIMACS TR 2002-58.
14. Heydermann, M.C., Cayley graphs and interconnection networks, in Graph Symmetry, G. Hahn, Sabiclussi, G., Editor. 1997, Kluwer Academic. p. 161-224.
15. Marden, J.I., Analysing and Modeling Rank Data. 1995: Chapman & Hall.
16. Parker, J.R., Multiple Sensors, Voting Methods and Target Value Analysis. 1998, Univ. of Calgary: Alberta CA.
17. Isard, M., Blake, A. Contour tracking by stochastic propagation of conditional density. in European Conf. on Computer Vision. 1996. Cambridge UK.
18. Collins, R.T., Lipton, A.J., Kanade, T. A System for Video Surveillance and Monitoring. Proc. American Nuclear Society 8th Int. Topical Meeting on Robotics and Remote Systems. 1999.
19. Brodsky, T., Cohen, R., Cohen-Solal, E., Gutta, S., Lyons, D., Philomin, V., Trajkovic, M. Visual Surveillance in Retail Stores and in the Home. in Proc. European Workshop on Advanced Video Surveillance. 2001. Kingsten on Thames UK.
20. Elgammal, A., Harwood, D., Davis, L.S.,. Nonparametric Model for Background Subtraction. Proc. 6th European Conference on Computer Vision. 2000.
21. Courtney, J.D., Automatic Video Indexing via Object Motion Analysis. Pattern Recog, 1997. 30(4): p. 607-625.






        1   2   3    4   5    6   7   8    9   10


R1    t1   t3   t5   t7   t9   t2   t4   t6   t8   t10   


R2    t2   t5   t8   t1   t4   t10  t9   t3   t9   t6   


R3       t3   t7   t1   t5   t2   t4   t6   t8   t9   t10   


R*       t1   t5   t3   t2   t7   t4   t8   t9   t6   t10   


V1    (t1  t2   t3) (t5   t7) t8  (t4   t9)  t10  t6   


V2    (t1  t5)  t2  (t4   t7)  t3 (t8   t9) (t6   t10)  








Figure 2: 3 Rankings and 3 Combinations with R*=LC(average), V1=VS1=Min, V2=VS2=Max.
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Figure 1: Rank and Fusion Architecture
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Figure 7: Rank/Score Graphs for (a) shape (b) position (c) color from video sequence B
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                 (a):  f(ti)=� EMBED Equation.3  ���


 ti       t1      t2    t3      t4   t5    t6      t7     t8      t9     t10  f(ti)    2.66  4    3.66  6   3   8.33 4.33 6.66 7.66 8.6





(b): Sort f(ti) in ascending order


n          1     2   3       4    5      6    7       8      9      10


Sf(n)   2.66 3    3.66  4   4.33  6   6.66  7.66  8.33  8.6





                  (c): R*(n) = f--1(Sf(n))


n          1    2    3    4    5    6    7    8    9    10


R*(n)    t1    t5   t3    t2    t7    t4   t8   t9   t6     t10  





Figure 3: Procedure to obtain R*
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Figure 8: Results for Video Sequence B fusing color and shape
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Figure 6: Results for Video Sequences A, B & C.
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Figure 5: Successful (a) and unsuccessful (b) Trajectories on the sequence in Fig. 5 (video B).
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Figure 4:Example Frames from Video Sequence (B).
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